Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein.
نویسندگان
چکیده
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a constitutively active fusion tyrosine kinase involved in lymphomagenesis of human anaplastic large cell lymphomas (ALCL), the maturation and activity of which depend on the association with the heat shock protein (hsp) 90 protein chaperone. Targeting hsp90 by the ansamycins geldanamycin and 17-allyl-amino-demethoxygeldanamycin (17-AAG) promotes degradation of several proteins through the ubiquitin-proteasome pathway, including oncogenic Raf, v-Src, erbB2, and BCR-ABL. We have previously shown that 17-AAG prevents hsp90/NPM-ALK complex formation and fosters NPM-ALK turnover, perhaps through its association with the hsp70 chaperone. Here, we show that inhibition of the proteasome activity by the potent and specific compound pyrazylcarbonyl-Phe-Leu-boronate (PS-341) blocks 17-AAG-induced down-regulation of NPM-ALK, which becomes detergent-insoluble and relocates into ubiquitin-rich perinuclear vesicles that represent aggregated polyubiquitinated forms of the protein. Kinase activity was not mandatory for proteasomal degradation of NPM-ALK, because kinase-defective NPM-ALK was even more rapidly degraded upon 17-AAG treatment. Prolonged exposure to the proteasome inhibitor was shown to trigger caspase-3-mediated apoptosis in proliferating ALCL cells at nanomolar concentrations. However, we verified that the accumulation of detergent-insoluble NPM-ALK in ALCL cells was not a spurious consequence of PS341-committed apoptosis, because caspase inhibitors prevented poly(ADP-ribose) polymerase cleavage whereas they did not affect partitioning of aggregated NPM-ALK. In line with these observations, the carboxyl hsp70-interacting ubiquitin ligase (CHIP), was shown to increase basal ubiquitination and turnover of NPM-ALK kinase, supporting a mechanism whereby NPM-ALK proceeds rapidly toward hsp70-assisted ubiquitin-dependent proteasomal degradation, when chaperoning activity of hsp90 is prohibited by 17-AAG.
منابع مشابه
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin.
Anaplastic large cell lymphomas (ALCL) are characterized by the expression of a chimeric protein, NPM-ALK, which originates from fusion of the nucleophosmin (NPM) and the membrane receptor anaplastic lymphoma kinase (ALK) genes. The NPM-ALK kinase, on dimerization, shows phosphotransferase activity and, through its interaction with various ALK-adapter proteins, induces cell transformation and i...
متن کاملProteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells.
The molecular chaperone heat shock protein 90 (Hsp90) affects the function of many oncogenic signaling proteins including nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressed in anaplastic large cell lymphoma (ALCL). While ALK-positive ALCL cells are sensitive to the Hsp90 inhibitor and the geldanamycin (GA) analog, 17-allylamino-17-demethoxygeldanamycin (17-AAG), the proteomic effects ...
متن کاملActivated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin.
Hsp90 is a ubiquitously expressed molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins. The benzoquinone ansamysin 17-allylamino-17-demethoxygeldanamycin (17-AAG) is an anticancer drug that disrupts Hsp90 binding to its clients, causing their degradation through the ubiquitin-dependent proteasomal pathway. The protein kinase B-RAF is mutated in approxima...
متن کاملGeldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts.
HL-60/Bcr-Abl cells, with ectopic expression of p185 Bcr-Abl tyrosine kinase (TK), and K562 cells, with endogenous expression of p210 Bcr-Abl TK, display a high degree of resistance against antileukemic drug-induced apoptosis (G. Fang et al., Blood, 96: 2246-2256, 2000). Present studies demonstrate that treatment with ansamycin antibiotic geldanamycin (GA), or its less toxic analogue 17-allylam...
متن کاملSimultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity.
The ansamycin antibiotic, geldanamycin, targets the hsp 90 protein chaperone and promotes ubiquitin-dependent proteasomal degradation of its numerous client proteins. Bortezomib is a specific and potent proteasome inhibitor. Both bortezomib and the geldanamycin analogue, 17-N-allylamino-17-demethoxy geldanamycin, are in separate clinical trials as new anticancer drugs. We hypothesized that dest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 9 شماره
صفحات -
تاریخ انتشار 2004